리서치 회사와 플랫폼 기업의 성공적인 데이터 제휴 모델

 

서론: ‘데이터 활용’과 ‘개인정보보호’, 두 마리 토끼를 잡는 기술

2025년 현재, 데이터는 기업의 가장 중요한 자산이지만, 동시에 가장 조심스럽게 다루어야 할 책임이기도 합니다. 특히 강력한 개인정보보호법(PIPA)이 시행되고 있는 대한민국에서, 기업들은 고객의 데이터를 활용하여 비즈니스 가치를 창출해야 하는 과제와, 고객의 개인정보를 철저히 보호해야 하는 의무 사이에서 아슬아슬한 줄타기를 하고 있습니다.

이러한 딜레마에 대한 가장 현명한 해법 중 하나가 바로, 대규모 회원을 보유한 플랫폼(예: 유통사, 금융사)과 전문 리서치 회사가 각자의 핵심 역량을 바탕으로 협력하는 ‘데이터 파트너십’ 모델입니다. 이 모델의 핵심은, 양사가 민감한 개인정보를 직접 교환하지 않으면서도, 마치 하나의 회사처럼 유기적으로 움직여 원하는 타겟에게 정확히 질문을 던지고, 그에 대한 보상을 제공하는 정교한 기술에 있습니다. 이제 그 ‘보이지 않는 기술’의 작동 원리를 단계별로 상세히 해부해 보겠습니다.

1. 의뢰와 설계: 리서치 회사의 역할

모든 조사는 의뢰인(Client)의 질문에서 시작됩니다. 가상의 시나리오를 통해 살펴보겠습니다.

  • 의뢰인: 신제품 ‘프리미엄 캡슐 커피’를 출시하려는 A 식품회사

  • 리서치 회사: PMI 또는 한국리서치와 같은 전문 리서치 회사

  • 제휴 플랫폼: 2천만 명의 회원을 보유한 대형 멤버십 ‘베스트 포인트’

A 식품회사는 PMI에 “최근 6개월 내 원두커피를 3회 이상 구매한, 서울 거주 30대 여성 베스트 포인트 회원”을 대상으로 신제품 수용도 조사를 의뢰합니다. PMI는 이 의뢰에 맞춰 최적의 설문지를 설계하고, 자사의 전문 설문조사 서버에 이 질문지들을 업로드합니다. 이때, 설문지의 고유한 URL 주소가 생성됩니다.

2. 타겟팅 요청: 개인정보 없는 소통의 시작

PMI는 이제 베스트 포인트 측에 조사 대상자를 찾아달라고 요청해야 합니다. 하지만 이때, 절대로 “서울 거주 30대 여성이고, 최근 6개월 내 원두커피 3회 이상 구매한 회원 명단과 연락처를 주십시오”라고 요구하지 않습니다. 이는 명백한 개인정보보호법 위반이기 때문입니다.

대신, 다음과 같은 형태의 **‘업무 요건 정의서’**를 전달합니다.

  • 조사명: A 식품회사 캡슐 커피 신제품 조사

  • 조사 URL: https://pmi.survey.com/survey123

  • 타겟 조건: (성별: 여성) AND (연령: 30-39세) AND (거주지: 서울) AND (구매 기록: 최근 6개월 내 원두커피 카테고리 3회 이상 구매)

  • 필요 응답 수: 500명

  • 응답 완료 시 지급 포인트: 1,500 베스트 포인트

이처럼 양사는 개인정보가 아닌, 조사의 요건과 규칙만을 소통합니다.

3. 플랫폼 내부의 마법: 대상자 추출과 초대 발송

이제 공은 베스트 포인트로 넘어왔습니다. 베스트 포인트는 자사의 서버와 데이터베이스 내에서 마법 같은 작업을 수행합니다.

  1. 자체 DB에서 대상자 추출: 베스트 포인트는 자사가 보유한 1자 데이터(First-Party Data), 즉 회원 가입 시 받은 인구통계 정보와 제휴 가맹점에서 축적된 고객의 실제 구매 이력 데이터를 활용하여, PMI가 요청한 조건에 정확히 부합하는 회원들을 자체적으로 필터링합니다.

  2. 초대 메시지 발송: 추출된 대상자들에게 베스트 포인트의 **자사 채널(앱 푸시, 카카오톡 알림톡, 이메일 등)**을 통해 조사 참여를 요청하는 메시지를 발송합니다. 메시지의 발송 주체는 PMI가 아닌, 회원이 신뢰하는 ‘베스트 포인트’이므로, 응답자는 스팸으로 인식할 가능성이 낮고 거부감 없이 메시지를 열어보게 됩니다.

4. 기술의 핵심 ①: 암호화된 식별값(Hashed Key)이란 무엇인가?

이때 베스트 포인트가 회원들에게 보내는 설문조사 링크는 단순한 URL이 아닙니다. 이 링크에는 이번 조사를 위해 특별히 생성된, 각 회원마다 고유한 암호화된 식별값이 포함되어 있습니다.

  • 예시 URL: https://pmi.survey.com/survey123?uid=A1B2c3D4e5F6g7

    • https://pmi.survey.com/survey123: PMI의 설문 서버 주소

    • ?uid=A1B2c3D4e5F6g7: 암호화된 고유 식별 파라미터

여기서 uid 뒤의 A1B2c3D4e5F6g7이라는 값은 베스트 포인트 시스템만 그 주인이 ‘김민지 회원’이라는 것을 알고 있는, 일종의 임시 비밀번호입니다. PMI나 다른 누구도 이 코드가 누구를 지칭하는지 전혀 알 수 없습니다. 이는 마치 은행에서 고객에게 임시 OTP 번호를 발급하는 것과 같은 원리입니다.

5. 기술의 핵심 ②: API 연동을 통한 설문 링크 전달

이러한 과정은 대부분 API(Application Programming Interface) 연동을 통해 자동화됩니다. API는 서로 다른 두 개의 소프트웨어(이 경우, 베스트 포인트 시스템과 PMI 시스템)가 서로 정보를 주고받을 수 있도록 연결하는 ‘소통의 창구’와 같습니다. 베스트 포인트는 PMI가 요청한 타겟 조건과 필요 응답 수를 API를 통해 전달받고, 추출된 대상자에게 발송할 고유 식별값이 포함된 링크를 생성하여 자동으로 발송을 시작합니다.

6. 응답자의 여정: 설문 참여와 데이터 기록

초대 메시지를 받은 ‘김민지 회원’은 링크를 클릭합니다. 이 순간, 김민지 회원은 베스트 포인트 앱을 떠나 웹 브라우저를 통해 PMI의 설문조사 서버로 이동하게 됩니다.

  • 김민지 회원은 PMI의 서버에서 캡슐 커피에 대한 설문에 응답합니다.

  • PMI의 서버는 김민지 회원의 응답 내용과 함께, 그녀의 암호화된 식별값인 uid=A1B2c3D4e5F6g7한 쌍으로 묶어 기록합니다.

  • PMI는 여전히 이 응답이 ‘김민지 회원’의 것인지는 모릅니다. 단지 ‘A1B2c3D4e5F6g7라는 고유 코드를 가진 누군가’가 이렇게 응답했다는 사실만 알 수 있습니다.

7. 기술의 핵심 ③: 서버 간 통신(S2S Postback)의 작동 원리

김민지 회원이 마지막 문항까지 모두 응답하고 ‘제출’ 버튼을 누르는 순간, 이번 여정의 클라이맥스인 **포스트백(Postback)**이 이루어집니다.

  1. PMI 서버는 김민지 회원이 설문을 성공적으로 완료했음을 인지합니다.

  2. 그 즉시, PMI 서버는 API를 통해 베스트 포인트 서버로 ‘설문 완료’ 신호(Signal)를 자동으로 보냅니다. 이를 ‘서버 간(Server-to-Server, S2S) 통신’이라고 합니다.

  3. 이 신호에는 단 하나의 핵심 정보, 즉 **“uid=A1B2c3D4e5F6g7 값을 가진 회원이 설문을 정상적으로 완료했습니다”**라는 내용만 담겨 있습니다. 여기에도 김민지 회원의 이름이나 연락처와 같은 개인정보는 전혀 포함되지 않습니다.

8. 보상과 마침표: 자동화된 포인트 지급

  1. 베스트 포인트 서버는 PMI 서버로부터 uid=A1B2c3D4e5F6g7의 완료 신호를 받습니다.

  2. 베스트 포인트는 자사의 DB에서 이 고유 코드가 ‘김민지 회원’임을 확인하고, 약속된 1,500 포인트를 그녀의 계정에 실시간으로 자동 적립해 줍니다.

  3. 동시에, 베스트 포인트 시스템은 ‘완료자 1명 추가’라고 카운트하여, 총 500명의 응답이 모두 채워지면 새로운 회원에게 더 이상 초대 메시지를 보내지 않고 조사를 마감합니다.

9. 다른 사례들: 토스부터 OK캐쉬백까지

이러한 기술 기반 파트너십은 PMI 외에도 이미 우리 생활 곳곳에서 활발하게 이루어지고 있습니다.

  • 금융 플랫폼: 토스(Toss)나 카카오뱅크는 ‘돈 버는 설문’과 같은 서비스를 제공할 때, 고객의 금융 자산이나 소비 패턴에 맞춰 외부 리서치 회사의 설문을 노출합니다. 이때 고객의 민감한 금융 정보는 절대 외부로 나가지 않으며, 오직 암호화된 식별값을 통한 S2S 연동만이 이루어집니다.

  • 통신사 및 멤버십: OK캐쉬백은 오랫동안 SK플래닛의 틸리언과 같은 리서치 플랫폼과 연계하여, 자사 회원들에게 설문 참여를 통한 포인트 적립 기회를 제공해왔습니다. 이 역시 동일한 기술적 원리에 기반합니다.

결론: 신뢰 기반의 데이터 파트너십 생태계

결론적으로, 이 방식은 ‘데이터 활용’과 ‘개인정보보호’라는, 종종 상충되어 보이는 두 가지 가치를 모두 충족시키는 매우 진보된 기술적 해결책입니다. 이는 단순한 ‘하청’ 관계를 넘어, 양사가 각자의 핵심 자산(리서치 회사는 설문 설계 및 분석 능력, 제휴사는 방대한 1자 데이터와 고객 접점)을 바탕으로 시너지를 창출하는 정교하고 안전한 **‘데이터 파트너십’**의 전형입니다.

리서치 회사는 개인정보 접근 없이도 이전보다 훨씬 더 정교한 타겟팅 조사를 수행할 수 있게 되고, 플랫폼 기업은 자사 회원들에게 새로운 보상 경험을 제공하며 고객 충성도를 높일 수 있습니다. 그리고 최종적으로 응답자는 자신의 소중한 개인정보를 안전하게 보호받으면서, 자신의 의견과 데이터에 대한 정당한 보상을 받게 됩니다. 이 신뢰 기반의 기술이야말로, 미래 데이터 산업의 가장 중요한 성장 동력이 될 것입니다.


댓글

이 블로그의 인기 게시물

5점 척도 분석 시 (환산) 평균값이 최상일까?

NPS(Net Promoter Score)는 왜 간단한데 파워풀해졌을까? 척도 해석의 창의성에 대하여

우리나라는 조사회사가 너무 많고, 선거여론조사도 너무 많이 하는걸까?